39 research outputs found

    Blind Multimodal Quality Assessment of Low-light Images

    Full text link
    Blind image quality assessment (BIQA) aims at automatically and accurately forecasting objective scores for visual signals, which has been widely used to monitor product and service quality in low-light applications, covering smartphone photography, video surveillance, autonomous driving, etc. Recent developments in this field are dominated by unimodal solutions inconsistent with human subjective rating patterns, where human visual perception is simultaneously reflected by multiple sensory information. In this article, we present a unique blind multimodal quality assessment (BMQA) of low-light images from subjective evaluation to objective score. To investigate the multimodal mechanism, we first establish a multimodal low-light image quality (MLIQ) database with authentic low-light distortions, containing image-text modality pairs. Further, we specially design the key modules of BMQA, considering multimodal quality representation, latent feature alignment and fusion, and hybrid self-supervised and supervised learning. Extensive experiments show that our BMQA yields state-of-the-art accuracy on the proposed MLIQ benchmark database. In particular, we also build an independent single-image modality Dark-4K database, which is used to verify its applicability and generalization performance in mainstream unimodal applications. Qualitative and quantitative results on Dark-4K show that BMQA achieves superior performance to existing BIQA approaches as long as a pre-trained model is provided to generate text description. The proposed framework and two databases as well as the collected BIQA methods and evaluation metrics are made publicly available on here.Comment: 15 page

    Loss of NLRP3 reduces oxidative stress and polarizes intratumor macrophages to attenuate immune attack on endometrial cancer

    Get PDF
    IntroductionThe interaction between endometrial cancer (EMC) cells and intratumoral macrophages plays a significant role in the development of the disease. PYD domains-containing protein 3 (NLRP3) inflammasome formation triggers caspase-1/IL-1β signaling pathways and produces reactive oxygen species (ROS) in macrophages. However, the role of NLRP3-regulated ROS production in macrophage polarization and the subsequent growth and metastasis of EMC remains unknown.MethodsWe conducted bioinformatic analysis to compare NLRP3 levels in intratumoral macrophages from EMC and normal endometrium. In vitro experiments involved knocking out NLRP3 in macrophages to shift the polarization from an anti-inflammatory M1-like phenotype to a proinflammatory M2-like phenotype and reduce ROS production. The impact of NLRP3 depletion on the growth, invasion, and metastasis of co-cultured EMC cells was assessed. We also evaluated the effect of NLRP3 depletion in macrophages on the growth and metastasis of implanted EMC cells in mice.ResultsOur bioinformatic analysis showed significantly lower NLRP3 levels in intratumoral macrophages from EMC than those from normal endometrium. Knocking out NLRP3 in macrophages shifted their polarization to a proinflammatory M2-like phenotype and significantly reduced ROS production. NLRP3 depletion in M2-polarized macrophages increased the growth, invasion, and metastasis of co-cultured EMC cells. NLRP3 depletion in M1-polarized macrophages reduced phagocytic potential, which resulted in weakened immune defense against EMC. Additionally, NLRP3 depletion in macrophages significantly increased the growth and metastasis of implanted EMC cells in mice, likely due to compromised phagocytosis by macrophages and a reduction in cytotoxic CD8+ T cells.DiscussionOur results suggest that NLRP3 plays a significant role in regulating macrophage polarization, oxidative stress, and immune response against EMC. NLRP3 depletion alters the polarization of intratumoral macrophages, leading to weakened immune defense against EMC cells. The reduction in ROS production by the loss of NLRP3 may have implications for the development of novel treatment strategies for EMC

    LSD1 Promotes Bladder Cancer Progression by Upregulating LEF1 and Enhancing EMT.

    Get PDF
    Epithelial-to-mesenchymal transition (EMT) is one of the important underlying molecular mechanisms for most types of cancers including bladder cancer. The precise underlying molecular mechanism in EMT-mediated bladder cancer progression is far from completed. LSD1, a histone lysine-specific demethylase, is known to promote cancer cell proliferation, metastasis, and chemoresistance. We found in this study that LSD1 is highly upregulated in bladder cancer specimens, especially those underwent chemotherapy, and the elevated levels of LSD1 are highly associated with bladder cancer grades, metastasis status, and prognosis. Inhibiting or knockdown LSD1 repressed not only EMT process but also cancer progression. Mechanistically, LSD1 complexes with β-catenin to transcriptionally upregulate LEF1 and subsequently enhances EMT-mediated cancer progression. More importantly, LSD1 specific inhibitor GSK2879552 is capable of repressing tumor progression in patient-derived tumor xenograft. These findings altogether suggest that LSD1 can serve as not only a prognostic biomarker but also a promising therapeutic target in bladder cancer treatment

    Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2.

    Get PDF
    Neuroendocrine prostate cancer (NEPC) is a more aggressive subtype of castration-resistant prostate cancer (CRPC). Although it is well established that PHF8 can enhance prostate cancer cell proliferation, whether PHF8 is involved in prostate cancer initiation and progression is relatively unclear. By comparing the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice with or without Phf8 knockout, we systemically examined the role of PHF8 in prostate cancer development. We found that PHF8 plays a minimum role in initiation and progression of adenocarcinoma. However, PHF8 is essential for NEPC because not only is PHF8 highly expressed in NEPC but also animals without Phf8 failed to develop NEPC. Mechanistically, PHF8 transcriptionally upregulates FOXA2 by demethylating and removing the repressive histone markers on the promoter region of the FOXA2 gene, and the upregulated FOXA2 subsequently regulates the expression of genes involved in NEPC development. Since both PHF8 and FOXA2 are highly expressed in NEPC tissues from patients or patient-derived xenografts, the levels of PHF8 and FOXA2 can either individually or in combination serve as NEPC biomarkers and targeting either PHF8 or FOXA2 could be potential therapeutic strategies for NEPC treatment. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    Racial and ethnic difference in the risk of fractures in the United States: a systematic review and meta-analysis

    No full text
    Abstract This systematic review and meta-analysis examined the association between race and ethnicity and fracture risk in the United States. We identified relevant studies by searching PubMed and EMBASE for studies published from the databases’ inception date to December 23, 2022. Only observational studies conducted in the US population that reported the effect size of racial-ethnic minority groups versus white people were included. Two investigators independently conducted literature searches, study selection, risk of bias assessment, and data abstraction; discrepancies were resolved by consensus or consultation of a third investigator. Twenty-five studies met the inclusion criteria, and the random-effects model was used to calculate the pooled effect size due to heterogeneity between the studies. Using white people as the reference group, we found that people of other races and ethnic groups had a significantly lower fracture risk. In Black people, the pooled relative risk (RR) was 0.46 (95% confidence interval (CI), 0.43–0.48, p < 0.0001). In Hispanics, the pooled RR was 0.66 (95% CI, 0.55–0.79, p < 0.0001). In Asian Americans, the pooled RR was 0.55 (95% CI, 0.45–0.66, p < 0.0001). In American Indians, the pooled RR was 0.80 (95% CI, 0.41–1.58, p = 0.3436). Subgroup analysis by sex in Black people revealed the strength of association was greater in men (RR = 0.57, 95% CI = 0.51–0.63, p < 0.0001) than in women (RR = 0.43, 95% CI = 0.39–0.47, p < 0.0001). Our findings suggest that people of other races and ethnic groups have a lower fracture risk than white people

    Application of consumer–level uav photogrammetry in digital survey of cliff-burial culture relics: a case study of mount Wuyi.

    Get PDF
    cliffs with log coffins (the “hanging coffins”) left in the natural caves, excavated grottoes or on some wood piles. In view of the fact that the cliff-burial sites are usually located on the escarpments overlooking the rivers and with great slope, where the conventional 3D survey means, such as ground laser scanning and traditional aerial photogrammetry, is out of option. This study explores the possibility of using UAV (consumer–level drone) with substantial improvement in survey accuracy, range and flight control (Figure 2), which aims to lay the foundation for the global cliff-burial culture heritage research. A survey method extendible on other excavated funeral sites would be tested and codified, as a possible follow up of the research on some study cases in Far East Asia and Europe

    Watt-level fluoroindate based glass fibre laser operating around 3 μm

    No full text
    Watt-level ∼2.9 μm laser emission in Ho3+/Pr3+ co-doped InF3–ZnF2–BaF2-GaF3-SrF2-PbF2-LiF-YF3-LaF3-NaF fluoroindate glass fibre is demonstrated for the first time. The glass composition is refined to obtain glasses with suitable thermal properties to be drawn into a fibre. Refractive indices are adjusted to operate as core and cladding materials. The maximum output power of 1.35 W with a slope efficiency of 21.14% is achieved at the wavelength of 2864 nm by using a 27 cm length fluoroindate fibre under a 1150 nm Raman laser pumping. The fibre has an attenuation of ∼1 dB/m at 1570 nm, and the effect of fibre length on the slope efficiency is used to optimize the fibre length. The experimental results indicate that fluoroindate glass is a very promising glass material for lasing applications operating within the mid-infrared wavelength range
    corecore